
Improving Hardware Security through
Type-Aware Systems Design

Wim Vanderbauwhede

School of Computing
University of Glasgow

12 September 2017

ARM Summit 2017 1/17

Who are we?

Academic Partners

Industrial Partners

ARM Summit 2017 2/17

Problems with System-on-Chip Construction

https://www.cyberscoop.com/researcher-finds-vulnerability-popular-microchips-used-android-iphones/

https://arstechnica.co.uk/apple/2015/08/thunderstrike-2-rootkit-uses-thunderbolt-accessories-to-infect-mac-firmware/

https://arstechnica.co.uk/security/2017/05/the-hijacking-flaw-that-lurked-in-intel-chips-is-worse-than-anyone-thought/

http://www.electronicdesign.com/iot/securing-iot-medical-devices-are-we-there-yet

ARM Summit 2017 3/17

• There are increasing concerns about the safety and security of critical
infrastructure such as nuclear power plants, the electricity grid and
other utilities, as well as the growing number of IoT devices, in the face
of possible cyber attacks.

• As ageing controllers are replaced by smart devices based on
Field-Programmable Gate Arrays and embedded microprocessors, the
safety of such devices raises many concerns.

• In particular, there are the very real risks of network-based attacks as
well as malicious functionality hidden in the silicon or in software
binaries, dormant and waiting to be activated.

• Current hardware and software systems are of such complexity that it is
impossible to test all parts of the systems to discover such code.

Aim: Type-Driven Development of SoCs

Aim
Use State-of-the-art techniques from programming language research to
develop a framework for System-on-Chip development that provides
guarantees about the structure & behaviour of SoCs at design &
runtime.

Type-Systems help us:
Reason about software programs; and
Describe (and check) a program’s structural and behavioural
properties:

multi-party session types
dependent types

subtyping
hybrid typing

ARM Summit 2017 4/17

• Our key idea is to use type systems to encode the formal interface
specification of all components in a SoC design

• In other words, the type declarations are the contracts. If the
implementation does not follow the contract, the design will not
compile.

• For third-party IP cores, the contract cannot be verified at design time
(the provider of the IP core could lie).

• Therefore we implement run-time type checking on any communication
issuing from such blocks

• Hence ‘Border Patrol’

The Idea: Patrolling Hardware Borders

CC

A B

C is checked statically

Border Patrol Unit A Border Patrol Unit B Protocol checked via Timed ADT-MPSTs

BA C

T1
T2

T3
T4

T5
T6

T7

t1

t2

t3

t5
t6

t7

ttt

Signal check against Range Constraints

t

y(t)

t

Δy(t)

t

Σy(t)

(y is a value of type T)

t4

Using type-systems we aim to:
create machine-checkable interface specifications that describe a SoCs
structure and behaviour;
ensure components interact in known ways using expected values;
and
monitor behaviour of third-party components during runtime against
the provided specifications.

ARM Summit 2017 5/17

Impact on Design Process

Border Patrol SoC Design Language

Type Checker Synthesis/
CodeGen

okay
HDL

Compile-
Time Error

error

Design
Specification

Structural
Description

System
Behavioural
Description

Frame Transfer
Information

IP-XACT,...

Click, System-C,...

DSL

IDE

Use existing standards for SoC specification.
Extend with State-of-the-Art features to describe behaviour.
Facilitate integration with existing design environments.

ARM Summit 2017 6/17

Why Dependent Types?
What if types can: depend on values; and be computed?

data Nat = Z | S Nat

data Vect : Nat -> Type -> Type where
Nil : Vect Z elem
Add : elem -> Vect len elem -> Vect (S len) elem

data ListType = Strings | Numbers

ListOf : Nat -> ListType -> Type
ListOf len Strings = Vect len String
ListOf len Numbers = Vect len Int

All code examples are in Idris www.idris-lang.org

ARM Summit 2017 7/17

Why Dependent Types?
More Precise Descriptions of Programs

With more information at the type level we can:
describe more precise properties of our software programs.
help programmers to write correct programs.
correctness by construction.

(++) : Vect m a -> Vect n a -> Vect (m + n) a
(++) Nil ys = ys
(++) (Add x xs) ys = Add x $ xs ++ ys

ARM Summit 2017 8/17

Why Session Types?

Session Types allow us to:
describe interactions between components;
separately from their implementation.

Example: TCP Handshake

Implementation

1 A → B : (Syn, x)
2 B → A : (SynAck, y , x + 1)
3 A → B : (Ack, y + 1, x + 1)

Session Type

1 A → B : k〈TCPMsg, Nat〉 .

2 B → A : k〈TCPMsg, Nat, Nat〉 .

3 A → B : k〈TCPMsg, Nat, Nat〉 . end

ARM Summit 2017 9/17

Why Session & Dependent Types?
Example Session Description

Handshake : Session [A,B] [(A,B)] ()
Handshake = do

activateAll
chan <- channel A B
startup chan
(_,x) <- send chan A B (TCPMsg SYN, Nat)
(_,y,_) <- send chan B A (TCPMsg SYNACK, Nat, Next x)
send chan A B (TCPMsg ACK, Next y, Next x)
shutdown chan A
deactivateAll
end

Jan de Muijnck-Hughes et al. ‘Type-Driven
Development of Communicating Systems us-
ing Idris.’. Presented at SPLS in Nov. 2016.
Nov. 2016

ARM Summit 2017 10/17

• Our type systems will be able to check many properties:
– Interface ports and communication protocols
– Value ranges on communicated information
– Time derivatives and integration of signals

• Example shows existing work to improve expressiveness of session types.

– Value dependencies
– Channel creation
– Specifications are first-class

Why Session & Dependent Types?
Implementation

myHandshakeServer : Nat -> Network Handshake B ()
myHandshakeServer y = do

Result ssock <- newServerSocket | Error err => fail err
Result bsock <- bind ssock Nothing 54321 | Error err => fail err
Result lsock <- listen bsock | Error err => fail err
Result (asock,addr) <- accept lsock | Error err => fail err

Result (msg, x) <- recv asock | Error err => fail err
io $ putStrLn (unwords ["Received:", show msg])

Success <- send asock (MkSynAck, y, (S x ** Refl)) | Error err => fail err
io $ putStrLn (unwords ["Sent: SYNACK", show (S x)])

Result (msg1, msg2, msg3) <- recv asock | Error err => fail err
io $ putStrLn (unwords ["Received:", show msg1, show msg2, show msg3])

unaccept asock
theyClose lsock

main : IO ()
main = run (myHandshakeServer 5)

Jan de Muijnck-Hughes et al. ‘Type-Driven
Development of Communicating Systems us-
ing Idris.’. Presented at SPLS in Nov. 2016.
Nov. 2016

ARM Summit 2017 11/17

• The example shows implementation.
• Note use of specification and endpoint declaration at the type level.
• Ordering of actions dictated by Handshake.

Runtime Type Checking
From Session Types to Finite State Machines

Multiparty Session Types can be compiled into FSMs:
semantic correspondence between MPSTs and communicating FSMs;
projections on each end point can be used as run-time protocol
checkers.

Dependent Types can add value checking to the FSMs:
dependent types can express bounds of values through linear
inequalities;
can trivially be extended to time derivatives and integrals

Pierre-Malo Deniélou et al. ‘Multiparty Ses-
sion Types Meet Communicating Automata.’.
In: ESOP. vol. 12. Springer. 2012, pp. 194–
213

ARM Summit 2017 12/17

Subtyping
Compatibility between interfaces

Interface compatibility
IP cores can use different interface standards
Requires glue logic to connect different interfaces
What if this glue logic could be inferred from the types?
This is possible through subtyping

Subtyping
Structural subtyping: the structure of two types determines whether
or not one is a subtype of the other
In particular, algebraic data types (sum and product types)
If actual structural subtyping is not a priori possible, provide a proof
of equivalence
Thus, proofs are formalisations of glue logic

Benjamin C Pierce. Types and programming
languages. MIT press, 2002

ARM Summit 2017 13/17

Border Patrol

In practice:
Create a new contract language, integrated in e.g. SDSoC

Familiar syntax (SystemVerilog, IP-XACT,...)
But compiles to our type descriptions

All modules in a design (IP cores) come with a contract in this
language
Trusted modules are checked at design time
Untrusted modules are checked at run time
Note that this approach extends to software

ARM Summit 2017 14/17

Border Patrol

Using Border Patrol we look to:

increase safety and security of smart devices; and
help safeguard critical infrastructure.

How does it benefit you?
Academic Research:

Advances in type-theory, programming language design and
compilation for HW/SW for System-on-Chip.

Industrial Research:
Novel approach to SoC Design: Safer, more secure, more productive.

Consumers:
Guarantees of Safety & Security; Checkable adherence to
specifications.

ARM Summit 2017 15/17

• The use of of our approach will dramatically increased safety and
security of smart devices and enable novel product developments

• These outcomes will have impact on both society and economy, by
helping to safeguard both critical infrastructure and home appliances
from cyber attacks.

• Why should you care?
– Academic Research: Innovations in type theory, programming

language design and compilation for HW and SW in
Systems-on-Chip

– Industrial Research: Novel approach to SoC design: safer, more
secure, more productive

– User of the Solution: Guarantees of safety and security and
adherence to specifications

ARM Summit 2017 16/17

Want to learn more about type systems?
Learn Haskell!

starts 18 September
futurelearn.com

ARM Summit 2017 17/17

