Improving Hardware Security through
Type-Aware Systems Design

Wim Vanderbauwhede

School of Computing
University of Glasgow

12 September 2017

@ BORDERPATROL

always on guard

Problems with System-on-Chip Construction

Researcher finds vulnerability in
pnpnlar microchips used in Andruld and
hon

iP|

“Thunderstrike 2" rootkit uses
‘Thunderbolt accessories to infect Mac
firmware

e o ot el it et

The hijacking flaw that lurked in Intel
chips is worse than anyone thought

Securing loT Medical
Devices—Are We There Yet?

To ensure secure communicatons in given design,
Gevelopers must conside ntegrating key securty- and
<afety elatet features that help to harden a mecical
Gevice against any maficious actity.

Who are we?

Academic Partners

Universit HERIO - Imperial College
ofblang\z AT'T Lozdon 9

UNIVERSITY

&

Industrial Partners

£ XILINX

: Type-Driven Development of SoCs

Aim

Use State-of-the-art techniques from programming language research to
develop a for Sy Chip that provides
guarantees about the structure & behaviour of SoCs at design &
runtime.

Type-Systems help us:
 Reason about software programs; and
= Describe (and check) a program's structural and behavioural

properties;
= multi-party session types = subtyping
= dependent types = hybrid typing

The Idea: Patrolling Hardware Borders

gom

0 '

Using type-systems we aim to:
u create machine-checkable interface specifications that describe a SoCs
structure and behaviour;
= ensure components interact in known ways using expected values;
and
= monitor behaviour of third-party components during runtime against
the provided specifications.

Why Dependent Types?
What if types can: depend on values; and be computed?
data Nat = Z | S Nat
data Vect : Nat -> Type -> Type where
t Z elem

Vec
elem => Vect len elem -> Vect (S 1

Add
data ListType = Strings | Numbers
ListOf : Nat -> ListType -> Type
ListOf len Strings = Vect len String

List0f len Numbers = Vect len Int

u All code examples are in Idris wiu.idris-lang.org

Vldris

Impact on Design Process

ation.

 Use existing standards for SoC sp
= Extend with State-of-the-Art features to describe behaviour.
= Facilitate integration with existing design environments.

Why Dependent Types?

More Precise Descriptions of Programs

With more information at the type level we can
= describe more precise properties of our software programs
= help programmers to write correct programs.

m correctness by construction.

(++) : Vect m Vect n a => Vect (m + n) a
(+4) Nil =
(++) (Add) = Add x § -+

Why Session Types? Why Session & Dependent Types?

Example Session Description

Session Types allow us to: Handshake : Session [A,B] [(4,B)] O
= describe interactions between components; Handshake = do
m separately from their implementation activateAll
han <= channel A B
startup ct
(_,x) <= send chan A B (TCPMsg SYN, Nat)
Example: TCP Handshake (_,7,_) <- send chan B A (TCPMsg SYNACK, Nat, lNext x)
Impl tatic Session Ty send ch A B (TCPMsg ACK, Next y, Next
mplementation ession Type atdown chan
1A= B (Syn, x) 1 A B:k(TCPlisg, Nat) deactivateAll
2 B+ A: (SynAck, y, x + 1) 2 B -+ A: k(TCPNsg, Nat, Nat) end
3 A B:(Ack y+1,x+1) 3 A B: k(ICPltsg, Nat, Nat) . end Jan de Muijnck-Hughes et al. “Type-

Development of Communicating Systems us-
ing ldris.". Presented at SPLS in Nov. 2016
Nov. 2016

Why Session & Dependent Types? Runtime Type Checking
Implementation From Session Types to Finite State Machines
nyHiandshakeServer : Nat -> Nstwork Handshake B)
ayHendshakeServer y = do
Result < neuServersocket | Error
Rosult < bind Nothing 4321 | Error = Multiparty Session Types can be compiled into FSMs:
Result <- listen | Errer m semantic correspondence between MPSTs and communicating FSMs;
Result (,addr) <= accept | Error " © y
m projections on each end point can be used as run-time protocol
Result (msg, x) <- recv | Error = fail checkers.
io § putStrin (unvords ["Received:", show msgl) m Dependent Types can add value checking to the FSMs
Success < sond (cSymter, 1) (5 « v RefD) | Error oo = fai1 m dependent types can express bounds of values through linear
io $ p Ln (unwords ["Semt: SYNACK", show (S x)1) inequalities;
 can trivially be extended to time derivatives and integrals
Result (ssgt, noc2, - rocy | Brror oo = fail
o $ putStrln (unwords ["Received:", show » show show 3b} Pierre-Malo Deniélou et al. ‘Multiparty Ses-
sion Types Meet Communicating Automata."
unaceept

In: ESOP. vol. 12. Springer. 2012, pp. 194—
213

Jan de Muijnck-Hughes et al. “Type-Driven
0 0 Development of Communicating Systems us-
run (nyHandshakeServer 5) ing Idris.'. Presented at SPLS in Nov. 2016,
Nov. 2016

Subtyping

Compatibility between interfaces

m Interface compatibility
= IP cores can use different interface standards
= Requires glue logic to connect different interfaces
= What i this glue logic could be inferred from the types?
= This is possible through subtyping
= Subtyping
m Structural subtyping: the structure of two types determines whether
or not one is a subtype of the other
= In particular, algebraic data types (sum and product types)
= I actual structural subtyping is not a priori possible, provide a proof
of equivalence
= Thus, proofs are formalisations of glue logic

Benjamin C Pierce. Types and programming
Janguages. MIT press, 2002

Border Patrol

Using Border Patrol we look to:

u increase safety and security of smart devices; and
u help safeguard critical infrastructure.

How does it benefit you?

u Academic Research
= Advances in type-theory, programming language design and
compilation for HW/SW for System-on-Chip.
= Industrial Research:
m Novel approach to SoC Design: Safer, more secure, more productive.
u Consumers:
= Guarantees of Safety & Security; Checkable adherence to
specifications.

Border Patrol

In practice:

= Create a new contract language, integrated in e.g. SDSoC
 Fanilar synta (Systn\Verlog, IPXACT,
m But compiles to our type descript

= All modules in a design (IP cores) come with a contract in this
language

= Trusted modules are checked at design time

= Untrusted modules are checked at run time

m Note that this approach extends to software

Thank you!

BORDER PATROL

always on guard

http.

/border-patrol.github.

Want to learn more about type
Learn Haskell!

Futurs B
Futr s G

nal Programming in
Haskell: Supercharge
Your Coding

Knctons pegmmioganuage, it th Uoverty

systems?

w starts 18 September
m futurelearn.com

