
Spring/Summer 2018 Quarterly Meeting

University of Glasgow

27 June 2018

Section 1

Overview

Past Activities

Q1 — Reading + Talking
Q2 — Reading + Talking + Visiting + Squiggling
Q3 — Reading + Talking + Visiting + Squiggling + Bodging

Q4 Goals

Heriot Watt: Verifying Protocol Implementations
Imperial: Extending theory of Session Types for Hardware.
Glasgow: Developing SoC Architecture Description Language.

Summary

Q4 — Reading + Talking + Visiting + Squiggling + Bodging

Section 2

Glasgow

Activities

Squiggling & Bodging
Developing SoC Architecture Description Language.
Examples using AXI, APB in progress

Talks—Self Invited
A Type-System for describing the Structural Topology of
System-on-a-Chip Architectures. MSP 101 University of
Strathclyde
A Type-System for describing System-on-a-Chip
Architectures. FP-Group University of St Andrews
A Type-System for describing System-on-a-Chip
Architectures. PL-Interest University of Edinburgh date tbc

Papers
Fake it until they make it: Implementing Substructural
Type-Systems for EDSLs using Dependent Types Jan de
Muijnck-Hughes, Edwin Brady, Wim Vanderbauwhede
submitted to TyDe 2018.

Cordial: A Language to Describe SoC Architectures
Interface

Description
Language

Typing
Components &
their Interfaces

Orchestration
Language

Note In progress
Stratified System of
Systems.

Take inspiration from
existing work.

Feed into behavioural
Design.
‘Correct-by-Construction’.
‘Cool Types’

Illustrative Example

System

P
Clock

An IP P

C

A 2nd IPC

P

Shared Bus

A 3rd IP

C

UoG Protocol
Usage

RW to ‘Memory’
Communication Style

Unicast & Broadcast
Signals

Clock
Control Write
Control Read
Address (8/16)
Data (64/32)
Optional Consumer
Error

Interface Description Language

Language to specify agnostic
structure of interface.
Ensure role uniqueness.
Generic & parameterised
interface descriptions.

Interface
Description
Language

Typing
Components &
their Interfaces

Orchestration
Language

1

An Interface Description Language

data RTy = CLOCK | WRITE | READ | ADDRESS | DATA | ERROR

UoG : (dWidth, aWidth : Nat) -> IDL RTy
UoG dWidth aWidth = do

c <- role CLOCK
w <- role WRITE
r <- role READ
e <- role ERROR
a <- role ADDRESS
d <- role DATA

signal c Clock ConstC 1 IsRequired SYS
signal w Control PC 1 IsRequired IP
signal r Control PC 1 IsRequired IP
signal e DataWire CP 2 ConsumerOptional IP
signal a AddressWire PC aWidth IsRequired IP
signal d DataWire PCCP dWidth IsRequired IP
end

UoG : (cStyle : CommStyle) -> (a,b:Nat) -> InterfaceTy cStyle RTy
UoG c a b = build c 1 2 (UoG_Gen a b)

Type Checking Components & Interfaces

Typing Components & their
Interfaces

State trustworthiness of
components.
Type-check ‘local’ interfaces
against ‘global’ description.
Source for HDL generation.

Interface
Description
Language

Typing
Components &
their Interfaces

Orchestration
Language

2

A IP Core and it’s Interfaces

An IP P

C

C

Shared Bus

A Consumer

MyIP : Component UnTrusted
[Producer, Consumer]
[UoG Unicast 64 8, UoG Broadcast 32 16]

MyIP = [uog_64_8_producer, uog_32_16_consumer]

Type Checking Interfaces
A Producing Interface

uog_64_8_producer : Interface cStyle RTy PRODUCER Producer (UoG cStyle 64 8)
uog_64_8_producer =

MkInterface $ (IPort (N DATA) DataWire INOUT 64 ...)
<::> (IPort (N ADDRESS) AddressWire OUT 8 ...)
<::> (IPort (N ERROR) DataWire IN 2 ...)
<::> (IPort (N READ) Control OUT 1 ...)
<::> (IPort (N WRITE) Control OUT 1 ...)
<::> (IPort (N CLOCK) Clock IN 1 ...)
<::> Empty

A Consuming Interface

uog_32_16_consumer : Interface cStyle RTy CONSUMER Consumer (UoG cStyle 32 16)
uog_32_16_consumer =

MkInterface $ (IPort (N DATA) DataWire INOUT 32 ...)
<::> (IPort (N ADDRESS) AddressWire IN 16 ...)
<::~> (IPort (N READ) Control IN 1 ...)
<::> (IPort (N WRITE) Control IN 1 ...)
<::> (IPort (N CLOCK) Clock IN 1 ...)
<::> Empty

Projecting Interfaces
Global

signal c Clock ConstC 1 IsRequired SYS
signal w Control PC 1 IsRequired IP
signal r Control PC 1 IsRequired IP
signal e DataWire CP 2 ConsumerOptional IP
signal a AddressWire PC aWidth IsRequired IP
signal d DataWire PCCP dWidth IsRequired IP

Local

MkInterface $ (IPort (N DATA) DataWire INOUT 32 ...)
<::> (IPort (N ADDRESS) AddressWire IN 16 ...)
<::~> (IPort (N READ) Control IN 1 ...)
<::> (IPort (N WRITE) Control IN 1 ...)
<::> (IPort (N CLOCK) Clock IN 1 ...)
<::> Empty

An Orchestration Language

Orchestration Language

Connect the boxes
Ensure signal/wire
compatibility.
Ensure interfaces are only
connected once.
Ensure shared channels
respect max masters &
slaves.
Note: In progress. . .

Interface
Description
Language

Typing
Components &
their Interfaces

Orchestration
Language3

Illustrative Example

System

P
Clock

An IP P

C

A 2nd IPC

P

Shared Bus

A 3rd IP

C

UoG Protocol
Usage

RW to ‘Memory’
Communication Style

Unicast & Broadcast
Signals

Clock
Control Write
Control Read
Address (8/16)
Data (64/32)
Optional Consumer
Error

Declaring Components & Interfaces

myFirstSoC : SoC
myFirstSoC = do

myFirstIP <- newComponent UnTrusted
mySecondIP <- newComponent Trusted
myThirdIP <- newComponent Trusted

mySharedBus <- newBus (UoG Broadcast 32 16)

a1p <- newInterface (UoG Unicast 64 8) Producer $ (uog_64_8_producer)
a1c <- newInterface (UoG Broadcast 32 16) Consumer $ (uog_32_16_consumer)

b2c <- newInterface (UoG Unicast 64 8) Consumer $ (uog_64_8_consumer)
b2p <- newInterface (UoG Broadcast 32 16) Consumer $ (uog_32_16_consumer)

c2c <- newInterface (UoG Broadcast 32 16) Consumer $ (uog_32_16_consumer)

addInterface myFirstIP a1p
addInterface myFirstIP a1c
addInterface mySecondIP b2p
addInterface mySecondIP b2c
addInterface myThirdIP c2c

Connecting Boxes

connect myFirstIP a1p mySecondIP b2c

addConsumer myFirstIP a1c mySharedBus
addConsumer myThirdIP c2c mySharedBus
addProducer mySecondIP b2p mySharedBus

end

Limitations

Ignoring System connections for now.
Whole interface connections only.

Ensuring Valid Direct Connections
A Producing Interface

uog_64_8_producer : Interface cStyle RTy PRODUCER Producer (UoG cStyle 64 8)
uog_64_8_producer =

MkInterface $ (IPort (N DATA) DataWire INOUT 64 ...)
<::> (IPort (N ADDRESS) AddressWire OUT 8 ...)
<::> (IPort (N ERROR) DataWire IN 2 ...)
<::> (IPort (N READ) Control OUT 1 ...)
<::> (IPort (N WRITE) Control OUT 1 ...)
<::> (IPort (N CLOCK) Clock IN 1 ...)
<::> Empty

A Consuming Interface

uog_32_16_consumer : Interface cStyle RTy CONSUMER Consumer (UoG cStyle 32 16)
uog_32_16_consumer =

MkInterface $ (IPort (N DATA) DataWire INOUT 32 ...)
<::> (IPort (N ADDRESS) AddressWire IN 16 ...)
<::~> (IPort (N READ) Control IN 1 ...)
<::> (IPort (N WRITE) Control IN 1 ...)
<::> (IPort (N CLOCK) Clock IN 1 ...)
<::> Empty

Current & Future Challenges

1 Interplay of Descriptions & Interfaces
What goes in the ‘type’ and how does it influence the ‘value’.

2 Reasoning about Component Connections?
Wire/Interface Compatibility
Connecting wires to interfaces
Payloads

3 Reasoning about Components
Clock speeds
Parameters

4 Generating Output
IP-XACT
HTML Documentation

HDL Stubbs
Block Diagrams

5 User Experience
Prof. Resilient EDSL Usage
Prof. Resilient DSL Usage?

Section 3

Imperial

Recap: Transaction handshaking with session types

Representing transaction handshaking in session types
Signal assert/unassert events as messages
Messages are either sent (asserted by) Master or Slave
The sequence of messages form a protocol
Master/Slave protocols valid if the protocols

are instances of basic handshake process
conform to transaction dependencies

Given a valid handshaking protocol
Generate (partial) endpoint IP implementation
Generate monitor for signals in Verilog

AXI protocol checker

Categories of checks

1 Bound checks, e.g. memory address, size of data
2 Initialisations, e.g. signals after resets
3 Event dependencies, e.g.

X must remain stable when Y is asserted and Z { high, low }
4 Other specific checks

Category 3 is especially suitable for session type-based approach,
but

No notion of time: next FSM transition when signal changes
Uniformly combining the dependencies?

Globally: explicitly specify all signal changes
Hierarchical: separate binary sessions, duration dependent on
parent

Timed Multiparty Session Types

Multiparty Session Types + Communicating timed Automata
Modular verification in distributed system
Constraints on global types, concrete values from system
Progress of timed processes if

Feasibility: global time constraints are satisfiable
Wait-freedom: message must be ready when receiving

Validating the specification
Can (global) timing constraints be satisfied?
Global types: No overlapping of time constraints within
(multiparty) session
Clocks and clock resets: Statically known concrete time
constraints

Timed Multiparty Session Types - Bocchi, Yang, Yoshida, CONCUR’14

Temporal modalities
Enrich binary session types with temporal modalities

Adds 3 temporal modalities next (◦A), always (�A), and
eventually (�A)
Uses when? and now! messages to express eventually
Time reconstruction - temporal refinement

Validating the specification
Previously (tMPST) difficult to express nondeterminate
abstract time passage
Overlap disjoint binary session as delay
No global type, but can we stack/overlap the sessions for a
global view?
We want to know if global view is satisfiable:

suitable for model checking in this form (hint: barbs)?
raising model checker specification to types
if so proceed with endpoint/monitor generation

Parallel Complexity Analysis with Temporal Session Types - Das,
Hoffmann, Pfenning, ICFP’18 also ForSpec Temporal Logic, TACAS’02

Section 4

Heriot Watt

CC

A B

C is checked statically

Border Patrol Unit A Border Patrol Unit B Protocol checked via Timed ADT-MPSTs

BA C

T1
T2

T3
T4

T5
T6

T7

t1

t2

t3

t5
t6

t7

ttt

Signal check against Range Constraints

t

y(t)

t

Δy(t)

t

Σy(t)

(y is a value of type T)

t4

Assertion based Hardware Bus Protocol Verification
Checker Design for On-line Testing of Xilinx FPGA
Communication Protocols
Straka et al, IEEE Defect and Fault Tolerance in VLSI Systems,
2007.

formal FSM language; monitor IP generated, LocalLink use case
Integration of Hardware Assertions in System-on-Chip
Geuzebroek et al, IEEE Int. Test Conf., 2008.

1% additional area cost for verifying hardware
A Synthesisable AXI Protocol Checker for SoC
Integration
Chen et al, Int. SoC Design Conf„ 2010.

44 rules for AXI protocol, 242MHz, 71k gate counts
A Distributed AXI-based Platform for Post-Silicon
Validation
Neishaburi et al, IEEE VLSI, 2011.
Verification of Memory Transactions in AXI Protocol
using System Verilog Approach
Mahesh et al, IEEE ICCSP, 2015.

use case: memory transactions, pseudo random coverage

Temporal assertions
IEEE 1850 PSL Standard
IEEE 1800 SystemVerilog Standard
Trigger operators

s |=> t!
s |-> t!
s |=> t
s |-> t

Concatenation, fusion, union, intersection etc..
s ; t
s : t
s | t
s && t
s & t
s within t

Consecutive repetitions
s[*i]
s[*i..j]
s[*i..]
s[*]
s[+]

MBAC

Hardware verification tool developed at McGill University
Input: PSL/SVA assertions, hardware module under test
Output: Hardware protocol checker for each assertion
Generates assertion-checking hardware from temporal
assertions
Generated hardware is efficient and synthesisable
Both for simulation and runtime checking
Academic license agreement between McGill University and
Heriot-Watt
Imperial and Glasgow sign MBAC license agreement too?

MBAC: assertions

v u n i t vu1 (t e s t){
defau l t c l o c k = (posedge c l k) ;

a s s e r t always a−> {b ; d} u n t i l c ;
a s s e r t next_event_a (a) [1 : 2] ({ { b ; c } |{ d ; e } }) ;
a s s e r t next_event_a (a) [2 : 5] ({ b ; c ; d }) ;
a s s e r t neve r {a ; b ; c } ;
a s s e r t { [+] : { a ; b ; c }} |−> f a l s e ;
a s s e r t neve r {a ; b ; c } ;

}

Use:

mbac sou r c e_de s i gn . v a s s e r t i o n s . p s l

MBAC: generated checker

//−−−−−−−−−−−−−−−
//ASR_1 : a s s e r t a lways a −> {b ; d} u n t i l c ;
//−−−−−−−−−−−−−−−
always @(posedge c l k) i f (‘AKRPS r e s e t) s1sq <=4’h2 ;

e l s e s1sq<=s1s ;
ass ign s 1 s={(a && b && ! (c))

| | (s1 sq [2] && (b && ! (c))) ,
(a && ! (c)) | | (s1 sq [2] && ! (c)) ,
1 ’ b1 ,
(a && ! (b) && ! (c))
| | (s1 sq [2] && (! (b) && ! (c)))
| | (s1 sq [3] && ! (d)) } ;

always @(posedge c l k) i f (‘AKRPS r e s e t) ASR_1<=0;
e l s e ASR_1 <= (s1 s [0]) ;

MBAC: generated checker

//−−−−−−−−−−−−−−−
//ASR_5 : a s s e r t { [+] : {a ; b ; c }} |−> 1 ’ b0 ;
//−−−−−−−−−−−−−−−
always @(posedge c l k) i f (‘AKRPS r e s e t) s5sq <=4’h4 ;

e l s e s5sq<=s5s ;
ass ign s 5 s={a ,

1 ’ b1 ,
(s5 sq [3] && b) ,
(s5 sq [1] && c) } ;

always @(posedge c l k) i f (‘AKRPS r e s e t) ASR_5<=0;
e l s e ASR_5 <= (s5 s [0]) ;

Session Types to Assertion Checking Hardware?

Border Patrol Publications
Accepted

Recursive Array Comprehensions in a Call by Value
Language, Artem Šinkarovs, Sven-Bodo Scholz, Robert
Stewart, Hans Vießmann, IFL, 2017.
Replicable Parallel Branch and Bound Search, Blair
Archibald, Patrick Maier, Ciaren McCreesh, Robert Stewart,
Phil Trinder, JPDC, 2017.
Parallel Mean Shift Accuracy and Performance
Trade-Offs, Kirsty Duncan, Robert Stewart, Greg Michaelson,
IEEE ICIP, 2018.
RIPL: A Parallel Image Processing Language for FPGAs,
Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia,
Deepayan Bhowmik, Andy Wallace, ACM TRETS, 2018.

Submitted
Parallel Dataflow Transformations with Model Checking
for FPGAs Robert Stewart, Bernard Berthomieu, Paulo Garcia,
Idris Ibrahim, Greg Michaelson, Andrew Wallace, ATVA, 2018.
Shared-variables synchronization approaches on dynamic
dataflow programs, Apostolos Modas, Simone Casale Brunet,
Robert Stewart, Junaid Jameel Ahmad, Endri Bezati, Marco
Mattavelli, IEEE SiPS, 2018.
Graph Reduction Hardware Revisited Robert Stewart,
Evgenij Belikov, Hans-Wolfgang Loidl, Paulo Garcia, Springer
LNCS, TFP, 2018.

Section 5

Goals

Q5 — Goals

Heriot Watt:
Imperial:
Glasgow:

Further develop Cordial and generate HDL & IP-XACT
Talks at Edinburgh
Papers on theory being Cordial, and Cordial itself.

Project
Inter-Group Collaboration

Q5 — Reading + Talking + Visiting + Squiggling + Bodging
+ ?

Section 6

AOCB

Section 7

Next Meeting

	Overview
	Glasgow
	Cordial Overview
	IDL
	Type Checking Components & Interfaces
	Orchestration Language
	Challenges

	Imperial
	Heriot Watt
	Goals
	AOCB
	Next Meeting

